Predictability Japan / East Sea (JES) System **Uncertain Initial / Lateral Boundary Conditions** and **Surface Winds**

Outline

- Introduction
- Experimental design
- Statistical analysis methods
- Results
- Conclusions

- Three Difficulties
- JES
 Geography &
 bottom
 topography
- PrincetonOcean Model

- Three Difficulties
- JESGeography &bottomtopography
- PrincetonOcean Model

Korea/Tsushima
Strait (connects
with the North
Pacific)

- Three Difficulties
- JES Geography & bottom topography
- PrincetonOcean Model
 - General information
 - Surface & lateral boundary forcing
 - Two step initialization

POM: a time-dependent, primitive equation model rendered on a three-dimensional grid that includes realistic topography and a free surface.

- Three Difficulties
- JES Geography & bottom topography
- PrincetonOcean Model
 - General information
 - Surface & lateral boundary forcing
 - Two step initialization

- Wind stress at each time step is interpolated from monthly mean climatological wind stress from COADS (1945-1989).
- Volume transports at open boundaries are specified from historical data.

Month	Feb.	Apr.	Jun.	Aug.	Oct.	Dec.
Tatar strait (inflow)	0.05	0.05	0.05	0.05	0.05	0.05
Soya strait (outflow)	-0.1	-0.1	-0.4	-0.6	-0.7	-0.4
Tsugaru strait (outflow)	-0.25	-0.35	-0.85	-1.45	-1.55	-1.05
Tsushima strait (inflow)	0.3	0.4	1.2	2.0	2.2	1.4

Unit: Sv, 1 Sv = 10^6 m³s⁻¹

- Three Difficulties
- JES
 Geography &
 bottom
 topography
- PrincetonOcean Model
 - General information
 - Surface & lateral boundary forcing
 - Two step initialization

Experiment	Property			
0	<u>Control run</u>			
1				
2				
3	Uncertain <u>velocity initialization processes</u>			
4				
5				
6	Uncertain <u>wind stress</u>			
7	Uncertain lateral boundary transport			
8	Uncertain <u>lateral boundary transport</u>			
9	Combination of uncertainty			
10				
11				

- Control Run
- Uncertain Initial Conditions
- UncertainWind Forcing
- Uncertain Lateral Transport
- Combined Uncertainty

- Control Run
- Uncertain Initial Conditions
- UncertainWind Forcing
- Uncertain Lateral Transport
- Combined Uncertainty

Experiment	Initial Conditions	Wind Forcing	Lateral Boundary Conditions
1	$V_0 = 0$, $T_0 = T_{JD180}$, $S_0 = S_{JD180}$	Same as Run-0	Same as Run-0
2		Same as Run-0	Same as Run-0
3	$\mathbf{V}_{0} = \mathbf{V}_{60D}^{(Diag)},$ $\mathbf{T}_{0} = \mathbf{T}_{\text{JD180}},$ $\mathbf{S}_{0} = \mathbf{S}_{\text{JD180}}$	Same as Run-0	Same as Run-0
4	$V_0 = V_{90D}^{(Diag)},$ $T_0 = T_{JD180},$ $S_0 = S_{JD180}$	Same as Run-0	Same as Run-0

- Control Run
- Uncertain Initial Conditions
- UncertainWind Forcing
- Uncertain Lateral Transport
- Combined Uncertainty

Experiment	xperiment Initial Wind Forcing Conditions		Lateral Boundary Conditions
5	Same as Run-0	Adding Gaussian random noise with zero mean and 0.5 m/s noise intensity	Same as Run-0
6	Same as Run-0	Adding Gaussian random noise with zero mean and 1.0 m/s noise intensity	Same as Run-0

- Control Run
- Uncertain Initial Conditions
- UncertainWind Forcing
- Uncertain Lateral Transport
- Combined Uncertainty

Experiment	nt Initial Conditions Wind Forcing		Lateral Boundary Conditions
7	Same as Run-0	Same as Run-0 Same as Run-0 Adding Gaus random noise the zero mean noise intensity 5% of the transcent (control run)	
8	Same as Run-0	Same as Run-0	Adding Gaussian random noise with the zero mean and noise intensity being 10% of the transport (control run)

- Control Run
- Uncertain Initial Conditions
- UncertainWind Forcing
- Uncertain Lateral Transport
- Combined Uncertainty

Experiment	Initial conditions	Wind forcing	Lateral Boundary Conditions
9	$egin{aligned} \mathbf{V}_0 &= \mathbf{V}_{30D}^{(Diag)}, \ T_0 &= T_{\mathrm{JD180}}, \ S_0 &= S_{\mathrm{JD180}} \end{aligned}$	Adding Gaussian random noise with 1.0 m/s noise intensity	Same as Run-0
10	$\mathbf{V}_{0} = \mathbf{V}_{30D}^{(Diag)},$ $T_{0} = T_{\text{JD180}},$ $S_{0} = S_{\text{JD180}}$	Same as Run-0	Adding Gaussian random noise with noise intensity being 10% of the transport (control run)
11	$\mathbf{V}_{0} = \mathbf{V}_{30D}^{(Diag)},$ $T_{0} = T_{\text{JD180}},$ $S_{0} = S_{\text{JD180}}$	Adding Gaussian random noise with 1.0 m/s noise intensity	Adding Gaussian random noise with noise intensity being 10% of the transport (control run)

Statistical Analysis Methods

Model Error:

$$\Delta \psi(x,y,z,t) = \psi_c(x,y,z,t) - \psi_e(x,y,z,t)$$

Root Mean Square Error (RMSE):

$$RMSE(z,t) = \sqrt{\frac{1}{My \times Mx}} \sum_{j=1}^{My} \sum_{i=1}^{Mx} \left[\Delta \psi_u(x_i, y_j, z, t)^2 + \Delta \psi_v(x_i, y_j, z, t)^2 \right]$$

Relative Root Mean Square Error (RRMSE) :

$$RRMSE(z,t) = \frac{\sqrt{\sum_{j=1}^{M_{y}} \sum_{i=1}^{M_{x}} \left[\Delta \psi_{u}(x_{i}, y_{j}, z, t)^{2} + \Delta \psi_{v}(x_{i}, y_{j}, z, t)^{2} \right]}}{\sqrt{\sum_{j=1}^{M_{y}} \sum_{i=1}^{M_{x}} \left[\psi_{c_{u}}(x_{i}, y_{j}, z, t)^{2} + \psi_{c_{v}}(x_{i}, y_{j}, z, t)^{2} \right]}}$$

Model Errors Due To Initial Conditions

Model Errors Due To Initial Conditions

- Model Error Distribution
 - Horizontal distribution
 - Histogram
- Relative Root Mean Square Error (RRMSE)

Model error is decreasing with time.

Difference among the four runs is not significant.

Model Errors Due To Initial Conditions

- Model Error Distribution
- Relative
 Root Mean
 Square Error
 (RRMSE)
 - Vertical Variation
 - Temporal Evolution

Effects to the horizontal velocity prediction are quite significant.

No obvious difference among these four runs.

Model Errors Due To Wind Forcing

- Model Error Distribution
 - Horizontal distribution
 - Larger model error in Run 6.
 - RC Model error is increasing with time.

Experiment	Wind Forcing
5	Adding Gaussian random noise with zero mean and 0.5 m/s noise intensity
6	Adding Gaussian random noise with zero mean and 1.0 m/s noise intensity

Model Errors Due To Wind Forcing

- Model Error Distribution
 - Horizontal distribution
 - Histogram
- Relative Root Mean Square Error (RRMSE)

Larger model error in Run 6.

Model error is increasing with time.

Model Errors Due To Wind Forcing

- Model Error Distribution
- Relative Root Mean Square Error (RRMSE)
 - Vertical Variation
 - Temporal Evolution

Larger model error in Run 6.

Effects to the horizontal velocity prediction are quite significant.

Model Errors Due To Open Boundary Conditions

- Model Error Distribution
 - Horizontal distribution
 - Larger model error in Run 8.
 - Ro Model error is increasing with time.

Experiment	Lateral Boundary Conditions			
7	Adding Gaussian random noise with the zero mean and noise intensity being 5% of the transport (control run)			
8	Adding Gaussian random noise with the zero mean and noise intensity being 10% of the transport (control run)			

Model Errors Due To Open Boundary Conditions

- Model Error Distribution
 - Horizontal distribution
 - Histogram
- Relative Root Mean Square Error (RRMSE)

Larger model error in Run 8.

Model error is increasing with time.

Model Errors Due To Open Boundary Conditions

- Model Error Distribution
- Relative Root Mean Square Error (RRMSE)
 - Vertical Variation
 - Temporal Evolution

Larger model error in Run 8.

Effects to the horizontal velocity prediction are quite significant.

Model Errors Due To **Combined Uncertainty**

- Model Error Distribution
 - Horizontal distribution
 - Larger model error in Run 11.
- Rela

Roof Model error is decreasing with time

Exper	In				
iment	conditions	forcing	Conditions		
9	$\begin{aligned} & \mathbf{V}_0 = \mathbf{V}_{30D}^{(Diag)}, \\ & \mathbf{T}_0^0 = \mathbf{T}_{\text{JD180}}, \\ & \mathbf{S}_0 = \mathbf{S}_{\text{JD180}} \end{aligned}$	with 1.0 m/s noise intensity	Same as Run-0		
10	$\begin{aligned} \mathbf{V}_{0} &= \mathbf{V}_{30D}^{(Diag)}, \\ \mathbf{T}_{0} &= \mathbf{T}_{\text{JD180}}, \\ \mathbf{S}_{0} &= \mathbf{S}_{\text{JD180}} \end{aligned}$	Same as Run-0	with noise intensity being 10% of the transport		
11	$\begin{aligned} \mathbf{V}_{0} &= \mathbf{V}_{30D}^{(Diag)}, \\ \mathbf{T}_{0} &= \mathbf{T}_{\text{JD180}}, \\ \mathbf{S}_{0} &= \mathbf{S}_{\text{JD180}} \end{aligned}$	with 1.0 m/s noise intensity	with noise intensity being 10% of the transport		

Model Errors Due To Combined Uncertainty

- Model Error Distribution
 - Horizontal distribution
 - Histogram
- Relative Root Mean Square Error (RRMSE)

Larger model error in Run 11.

Model error is decreasing with time.

Model Errors Due To Combined Uncertainty

- Model Error Distribution
- Relative Root Mean Square Error (RRMSE)
 - Vertical Variation
 - Temporal Evolution

Larger model error in Run 11.

Effects to the horizontal velocity prediction are quite significant.

For uncertain velocity initial conditions:

- The model errors **decreases** with time.
- The model errors with and without *diagnostic initialization* are quite **comparable and significant**.
- The **magnitude of model errors** is **less dependent** on the *diagnostic initialization period* no matter it is <u>30 day,60 day</u> or 90 day.

Experiment	Vertically averaged RRMSE		Max. RRMSE		
	Min.	Max.	5 th Day	180th Day	
For uncertain velocity initial conditions	20%	<u>50%</u>	70% near the surface	25% near the surface	

For uncertain wind forcing:

The model error increases with time and noise intensity.

Experiment	Vertically averaged RRMSE		Max. R	RMSE
	Min.	Max.	5 th Day	180 th Day
For 0.5 m/s noise intensity	<u>8%</u>	<u>19%</u>	35% near the surface	50% near the surface
For 1.0 m/s noise intensity	<u>11%</u>	28%	60% near the surface	80% near the surface

For uncertain <u>lateral boundary transport</u>:

The model error increases with time and noise intensity.

Experiment	Vertically averaged RRMSE		averaged Max. R		RMSE
	Min.	Max.	5 th Day	180th Day	
For noise intensity as 5% of transport	<u>9%</u>	20%	14% near the bottom	18% near the bottom	
For noise intensity as 10% of transport	<u>17%</u>	<u>34%</u>	24% near the bottom	28% near the bottom	

For **combined uncertainty**:

Experiment	Vertically averaged RRMSE		Max. RRMSE	
	Min.	Max.	5 th Day	180th Day
For uncertain initial condition and wind forcing	20%	<u>52%</u>	70% near the surface	77% near the surface
For uncertain <u>initial</u> condition and <u>lateral</u> boundary transport	<u>27%</u>	<u>50%</u>	65% near the bottom	35% near the bottom
For uncertain initial condition, wind forcing and lateral boundary transport	<u>30%</u>	<u>55%</u>	73% near the surface	78% near the surface

Thank you!!